Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Electron J Biotechnol ; 49: 42-49, Jan. 2021. tab, graf, ilus
Article in English | LILACS | ID: biblio-1291646

ABSTRACT

BACKGROUND: Late embryogenesis abundant (LEA) proteins were reported to be related to adversity stress and drought tolerance. Lea-3 from Arachis hypogaea L. (AhLea-3) was previously found to be related to salt tolerance according to the result of transcriptome profiling and digital gene expression analysis. So, AhLea-3 was cloned and the salt tolerance was validated by transgenic peanut plants. RESULTS: AhLea-3 was isolated from M34, a salt-resistant mutant of peanut, with its cDNA as the template. AhLea-3 contains one intron and two extrons, and the full-length cDNA sequence contains 303 bp. AhLea3 was ligated to pCAMBIA1301 to obtain the overexpression vector pCAMBIA1301-AhLea-3, which was then transferred into peanut variety Huayu23. The expression level of AhLea-3, as determined by qRTPCR analysis, was >10 times higher in transgenic than in non-transgenic plants. Five days after they were irrigated with 250 mM NaCl, the transgenic plants showed less severe leaf wilting, higher activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), and lower malonic dialdehyde content than non-transgenic plants. Relative to non-transgenic plants, the transgenic plants had a higher photosynthetic net rate, stomatal conductance, and transpiration rate, and a lower intercellular CO2 concentration after salt stress treatment (250 mM NaCl). CONCLUSIONS: These results indicate that overexpression of AhLea-3 increased the salt tolerance of transgenic peanut plants. AhLea-3 might become a useful gene resource for the variety breeding of salinity tolerance in peanut.


Subject(s)
Arachis/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Salt Tolerance , Arachis/genetics , Plant Proteins/isolation & purification , Transformation, Genetic
2.
Electron. j. biotechnol ; 32: 19-25, Mar. 2018. graf, ilus
Article in English | LILACS | ID: biblio-1022497

ABSTRACT

Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1) with higher salinity resistance than its mutagenic parent HY22 (S3) was obtained. Transcriptome sequencing and digital gene expression (DGE) analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL). All unigenes were searched against the euKaryotic Ortholog Groups (KOG), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs) between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs), major intrinsic proteins (MIPs) or aquaporins, metallothioneins (MTs), lipid transfer protein (LTP), calcineurin B-like protein-interacting protein kinases (CIPKs), 9-cis-epoxycarotenoid dioxygenase (NCED) and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut.


Subject(s)
Arachis/genetics , Salt-Tolerant Plants/genetics , Salt Tolerance/genetics , Transcriptome/genetics , Soil , Sodium Chloride , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL